On Strong Ellipticity
and the Legendre-Hadamard Condition

Yi-chao Chen

Communicated by C.-C. Wang

1. Introduction

The purpose of this paper is twofold. First, we derive conditions characterizing all fourth-order tensors that satisfy the strong ellipticity condition or the Legendre-Hadamard condition. Secondly, we establish the sufficiency of the Legendre-Hadamard condition for the non-negativity of the second variation in non-linear elasticity in a class of variations that satisfy a certain type of boundary condition.

In elasticity theory, the elasticity tensor \(A \) satisfies the Legendre-Hadamard condition if

\[
(a \otimes b) \cdot A(a \otimes b) \geq 0
\]

for all vectors \(a \) and \(b \), and satisfies the strong ellipticity condition if the strict version of the above inequality holds for all non-zero vectors \(a \) and \(b \). These conditions play important roles in the study of stability and wave propagation in elasticity theory. Accordingly, it is of interest to characterize, in a general way, all tensors that satisfy these conditions. By defining an appropriate linear transformation for fourth-order tensors, we show that whether a fourth-order tensor \(A \) satisfies these conditions is completely determined by the projection of its transform on a 36-dimensional subspace of the space of fourth-order tensors. Furthermore, it is found that \(A \) is strongly elliptic if and only if the associated projection maps non-zero, positive semi-definite, symmetric second-order tensors to positive-definite, symmetric tensors, and that \(A \) satisfies the Legendre-Hadamard condition if and only if the associated projection maps positive semi-definite, symmetric tensors to positive semi-definite, symmetric tensors.

VAN Hove [2] has shown, by using Fourier transforms, that if \(A \) is constant in a domain \(\Omega \), the Legendre-Hadamard condition is sufficient for the inequality

\[
\int_\Omega \nabla u \cdot A(\nabla u) \geq 0
\] (1)
to hold for all smooth functions u that vanish on $\partial \Omega$. In this paper, we show that if A is the elasticity tensor for an isotropic material, then the above statement holds for all smooth functions u that satisfy

$$\left(\int_{\Omega} u \otimes \nabla u \otimes n \right) [W] = 0$$

for any skew tensor W, where n is the outward unit normal to $\partial \Omega$. The last equation defines a class of variations that is much richer than that consisting of functions that vanish on $\partial \Omega$. As an application of this result, the Legendre-Hadamard condition implies the so-called infinitesimal stability\(^1\) for a homogeneous deformation of an isotropic elastic body subject to a class of boundary conditions compatible with the last equation. The proof of our results is purely algebraic, without using the Fourier transform. The basic idea of the proof is a natural one. Rewriting the left-hand side of (1) in the form

$$A \cdot \left(\int_{\Omega} \nabla u \otimes \nabla u \right),$$

we show that the essential part of this integral can be represented as a sum of tensor products of second-order tensors of rank-one.

2. Preliminaries

We denote by Lin the space of all linear transformations (tensors) from \mathbb{R}^3 into \mathbb{R}^3, by Sym the subspace of Lin consisting of all symmetric tensors, and by Skw the subspace of Lin consisting of all skew tensors. The following decomposition of Lin is well-known:

$$\text{Lin} = \text{Sym} \oplus \text{Skw}.$$

Given an orthonormal basis $\{e_i\}$ of \mathbb{R}^3, we can form an orthonormal basis $\{E_{ij}\}$ of Lin by\(^2\)

$$E_{ij} = e_i \otimes e_j \text{ (no sum)},$$

$$E_{ij} = \frac{1}{\sqrt{2}} \left(e_i \otimes e_j + e_j \otimes e_i \right) \quad i = j \text{ (no sum)},$$

$$e_{ij} = \begin{cases} 1 & \text{if } \{i,j\} = \{1, 2\}, \{2, 3\}, \text{ or } \{3, 1\} \\ -1 & \text{otherwise} \end{cases}$$

Let

$$\mathcal{M} = \{(i,j): i = j \text{ or } e_{ij} = 1\}, \quad \mathcal{W} = \{(i,j): e_{ij} = -1\}.$$

It is then obvious that the set $\{E_{ij}: (i,j) \in \mathcal{M}\}$ forms an orthonormal basis of Sym and $\{E_{ij}: (i,j) \in \mathcal{W}\}$ an orthonormal basis of Skw.

\(^1\) See Truesdell & Noll [1, Section 68].

\(^2\) In this work, indices range from 1 to 3, unless otherwise stated.
It is well-known that a symmetric tensor S has a spectral decomposition
\[S = \sum \lambda_i m_i \otimes m_i, \quad |m_i| = 1, \]
(3)
where λ_i are (real) eigenvalues of S. We denote by Sym_+ the subset of Sym consisting of all symmetric tensors that are positive semi-definite, i.e., for which $\lambda_i \geq 0$ in (3), and by Sym^- all symmetric tensors that are positive-definite, i.e., for which $\lambda_i > 0$ in (3).

Let \mathcal{A} denote the space of all linear transformations from Lin into itself, associated with the inner product defined in the usual manner, e.g., in components with respect to $\{e_i\}$,
\[A \cdot B = \sum_{i,j,k,l} A_{ijkl} B_{ijkl}. \]

It is an easy matter to show that \mathcal{A} has the following decomposition
\[\mathcal{A} = (\text{Sym} \otimes \text{Sym}) \oplus (\text{Sym} \otimes \text{Skw}) \oplus (\text{Skw} \otimes \text{Sym}) \oplus (\text{Skw} \otimes \text{Skw}) \]
(4)
where
\[\text{Sym} \otimes \text{Sym} = \left\{ A \in \mathcal{A} : A = \sum_{i,j,k,l} a_{ijkl} E_{ij} \otimes E_{kl}, a_{ijkl} \in \mathbb{R}, (i,j) \in \mathcal{M}, (k,l) \in \mathcal{M} \right\}, \]

and the other three components on the right-hand side of (4) are defined similarly.

We define a subspace \mathcal{G} of \mathcal{A} by
\[\mathcal{G} = \left\{ G \in \mathcal{A} : G = \sum_{i=1}^{n} g_i a_i \otimes a_i \otimes b_i \otimes b_i, g_i \in \mathbb{R}, a_i, b_i \in \mathbb{R}^3, \text{\ n a positive integer} \right\}. \]

We denote by $P(A)$ the orthogonal projection of $A \in \mathcal{A}$ on \mathcal{G}. The following proposition identifies \mathcal{G} with $\text{Sym} \otimes \text{Sym}$, and therefore makes it clear how to find $P(A)$ for a given A.

Proposition 1. $\mathcal{G} = \text{Sym} \otimes \text{Sym}$.

Proof. We observe from (4) and (5) that the set $\text{Sym} \otimes \text{Sym}$ consists of all fourth-order tensors that map Sym into Sym and map Skw to $\{0\}$. Yet, each G in \mathcal{G} has such a property. Hence, $\mathcal{G} \subset \text{Sym} \otimes \text{Sym}$. To show that $\text{Sym} \otimes \text{Sym} \subset \mathcal{G}$, we note that E_{ij} and E_{kl} in (5) are symmetric and have a spectral decomposition.

Let \mathcal{G}_+ be the subset of \mathcal{G} such that each G in \mathcal{G}_+ has a representation similar to those in \mathcal{G} but with $g_i \geq 0, \ i = 1, 2, \ldots, n$.

For an $A \in \mathcal{A}$, we define A', the "2–3 transpose" of A, by
\[A'[u \otimes v] w = A[w \otimes v] u \quad \text{for all } u, v, w \in \mathbb{R}^3. \]
In components with respect to \(\{ e_i \} \),
\[
A_{jkl}^i = A_{ijkl}.
\]

We write
\[
\text{Lin}^- = \{ F \in \text{Lin}: \det F > 0 \},
\]
\[
\text{Orth}^+ = \{ Q \in \text{Lin}^-: Q^TQ = I \},
\]
where \(I \) is the identity tensor, and a superimposed \(T \) denotes the usual transpose.

3. The Constitutive Relation, Strong Ellipticity

We consider a homogeneous elastic body that occupies a bounded regular domain \(\Omega \subset \mathbb{R}^3 \) in a fixed reference configuration. A deformation of the body is represented by an invertible function \(\mathbf{x} \in C^1(\Omega; \mathbb{R}^3) \), such that \(\nabla \mathbf{x} \in \text{Lin}^- \). We denote by \(F \) the deformation gradient \(\nabla \mathbf{x} \), which admits the polar decomposition
\[
F = RU,
\]
where \(R \in \text{Orth}^- \) and \(U \in \text{Sym}^- \).

The body is associated with a response function \(S \in C^1(\text{Lin}^-; \text{Lin}) \). For a deformation \(\mathbf{x} \), the Piola-Kirchhoff stress is given by \(S(\nabla \mathbf{x}) \). By the principle of frame-indifference, the response function satisfies
\[
S(QF) = QS(F) \quad \text{for all } Q \in \text{Orth}^+, F \in \text{Lin}^-.
\]

The body is isotropic if
\[
S(FQ) = S(F) Q \quad \text{for all } Q \in \text{Orth}^+, F \in \text{Lin}^-.
\]
It is well-known\(^3\) that (7) and (8) imply the following representation of the response function:
\[
S(F) = s_1 F + s_2 FF^T F + s_3 F^{-T},
\]
where \(s_i \) are scalar functions of the principal invariants of \(U \), and \(F^{-T} = (F^T)^{-1} \).

The elasticity tensor at the deformation gradient \(F \) is defined by
\[
A(F) = \frac{dS}{dF}(F).
\]
The elasticity tensor is said to be strongly elliptic at \(F \) if
\[
(a \otimes b) \cdot A(F) [a \otimes b] > 0 \quad \text{for all } a, b \in \mathbb{R}^3, a \neq 0, b \neq 0.
\]

\(^3\) See, for example, TRUESDELL & NOLL [1].
Proposition 2. The elasticity tensor is strongly elliptic at \(F \) if and only if
\[
P\langle A(F)^{\gamma} \rangle \cdot G > 0 \quad \text{for all } G \in \mathcal{G}_+ \setminus \{O\}.
\]

Proof. Let \(G \in \mathcal{G}_+ \setminus \{O\} \) be given with
\[
G = \sum_{i=1}^{n} g_i a_i \otimes a_i \otimes b_i \otimes b_i, \quad g_i > 0, \quad a_i = 0, \quad b_i = 0.
\]

Since \(P(G) = G \), we have
\[
P\langle A(F)^{\gamma} \rangle \cdot G = A(F)^{\gamma} \cdot G = A(F) \cdot G - \sum_{i=1}^{n} g_i (a_i \otimes b_i) \cdot A(F) [a_i \otimes b_i].
\]

The last expression is positive if \(A(F) \) is strongly elliptic, which proves necessity. To show sufficiency, we note that
\[
(a \otimes b \otimes a \otimes b)^{\gamma} \in \mathcal{G}_+ \quad \text{for all } a, b \in \mathbb{R}^3,
\]
and that
\[
(a \otimes b) \cdot A(F) [a \otimes b] = P\langle A(F)^{\gamma} \rangle \cdot (a \otimes b \otimes a \otimes b)^{\gamma}. \quad \square
\]

Proposition 2 shows, among other things, that the strong ellipticity of the elasticity tensor \(A \) is completely determined by the projection of \(A' \) on \(\mathcal{G} \). In general, \(A \) has 81 components with respect to the basis \(\{E_{ij} \otimes E_{kl}\} \). Only 36 of them play a role in the strong ellipticity condition for \(A \).

Theorem 1. Suppose that \(A \in \mathcal{G} \). Then
\[
A \cdot G > 0 \quad \text{for all } G \in \mathcal{G}_+ \setminus \{O\}
\]
if and only if \(A \) maps \(\text{Sym}_+ \setminus \{O\} \) into \(\text{Sym}^- \).

Proof. Necessity. Let \(S \in \text{Sym}_+ \setminus \{O\} \) be given with
\[
S = \sum_{i=1}^{n} \lambda_i m_i \otimes m_i, \quad \lambda_i \geq 0, \quad \max \{\lambda_i\} > 0, \quad |m_i| = 1.
\]
Then \(A[S] \in \text{Sym} \) since \(A \in \mathcal{G} \). Moreover, for any \(v \in \mathbb{R}^3 \), \(v = 0 \),
\[
v \cdot A[S] v = A \cdot \left(\sum_{i=1}^{n} \lambda_i v \otimes v \otimes m_i \otimes m_i \right).
\]
By hypothesis, the right-hand side is positive since the fourth-order tensor in the parenthesis belongs to \(\mathcal{G}_+ \setminus \{O\} \).

Sufficiency. Let \(G \in \mathcal{G}_+ \setminus \{O\} \) be given with a representation (10). Then
\[
A \cdot G = \sum_{i=1}^{n} g_i (a_i \otimes a_i) \cdot A[b_i \otimes b_i].
\]
Each term on the right-hand side is positive by hypothesis. \(\square \)
Corollary 1. A necessary and sufficient condition for the elasticity tensor A to be strongly elliptic is that the projection of A' on \mathcal{G} map each non-zero, positive semi-definite, symmetric tensor to a positive-definite, symmetric tensor.

Proposition 3. The elasticity tensor is strongly elliptic at F if and only if it is strongly elliptic at U.

Proof. Differentiating (7) with respect to F, setting $Q = R^T$ and using (6), we find that

$$H \cdot A(F)[H] = (R^T H) \cdot A(U)[R^T H] \quad \text{for all } H \in \text{Lin}. \quad (11)$$

The desired result then follows. □

The elasticity tensor is said to satisfy the Legendre-Hadamard condition at F if

$$(a \otimes b) \cdot A(F)[a \otimes b] \geq 0 \quad \text{for all } a, b \in \mathbb{R}^3.$$

Since the above inequality is the non-strict version of the inequality appearing in the definition of strong ellipticity, all results we have thus far concerning strong ellipticity can be made appropriate for the Legendre-Hadamard condition as follows.

Proposition 4. The elasticity tensor satisfies the Legendre-Hadamard condition at F if and only if

$$P(A(F))' \cdot G \geq 0 \quad \text{for all } G \in \mathcal{G}_+. $$

Theorem 2. Suppose that $A \in \mathcal{G}$. Then

$$A \cdot G \geq 0 \quad \text{for all } G \in \mathcal{G}_-$$

if and only if A maps Sym_+ into itself.

Corollary 2. A necessary and sufficient condition for the elasticity tensor A to satisfy the Legendre-Hadamard condition is that the projection of A' on \mathcal{G} maps each positive semi-definite symmetric tensor to a positive semi-definite symmetric tensor.

Proposition 5. The elasticity tensor satisfies the Legendre-Hadamard condition at F if and only if it does so at U.

4. Homogeneous Deformations of an Isotropic Body

A deformation x is homogeneous if ∇x is constant in Ω. In this case, the values of the response function and the elasticity tensor are constant as well since we are considering a homogeneous body.
In the study of stability and wave propagation in elasticity theory, it is of interest to find conditions on the elasticity tensor such that the following inequality holds:

$$\int_B \nabla u \cdot A(F)[\nabla u] \geq 0 \quad \text{for all } u \in C^4(\Omega; \mathbb{R}^3).$$

(12)

If the response function is derived from a strain-energy function, inequality (12) stands as the second variation condition associated with the minimization of the integral of the strain-energy function over Ω.

It is well-known\(^4\) that a necessary condition for (12) to hold is that $A(F)$ satisfy the Legendre-Hadamard condition. This condition is not sufficient in general. However, van Hove [2] showed that if F is constant in Ω, then the Legendre-Hadamard condition is sufficient for (12) to hold provided that $u|_{\partial \Omega} = 0$. The technique employed by van Hove uses the Fourier transform to convert the left-hand side of (12) to an integral in which the integrand consists of quadratic forms of $A(F)$ with rank-one tensors.

In this work, we shall prove, by using a totally different approach, a strengthened version of van Hove's theorem for isotropic bodies. Precisely, we shall show that if F is constant in Ω, if the response function is given by (9), and if $A(F)$ satisfies Legendre-Hadamard condition, then inequality (12) holds for all $u \in C^4(\Omega; \mathbb{R}^3)$ that satisfy

$$\left(\int_{\partial \Omega} u \otimes \nabla u \otimes n \right)[W] = 0 \quad \text{for all } W \in \text{Skw},$$

(13)

where n is the outward unit normal to $\partial \Omega$. That the condition (13) is weaker than $u|_{\partial \Omega} = 0$ is readily illustrated by the example

$$u(X) = \varphi(X) \mathbf{a},$$

\mathbf{a} being a non-zero vector and $\varphi \in C^4(\Omega; \mathbb{R})$.

Henceforth, we take E_{ij} defined in (9) to be such that e_1, e_2, e_3 are three orthonormal eigenvectors of U. The elasticity tensor A for an isotropic body can be found by differentiating (9) with respect to F. In particular, we have

$$E_{ij} : P(A(U)^r)[E_{kl}] = 0 \quad \text{for } \epsilon_{ij} = 1 \text{ or } \epsilon_{kl} = 1, (i, j) = (k, l),$$

$$E_{ij} : P(A(U)^r)[E_{ij}] = E_{ij} : P(A(U)^r)[E_{ij}] \text{ (no sum)}.$$

This shows that $P(A(U)^r)$ has at most 12 non-zero components with respect to $\{E_{ij} \otimes E_{kl}\}$, among which there are three identical pairs. Hence, we can write

$$P'(A(U)^r) = \sum_{(i,j) \neq (i',j')} a_{ij} E_{ij} \otimes E_{ij} - \sum_{i \neq j} a'_{ij} E_{ii} \otimes E_{jj},$$

(14)

where a_{ij} and a'_{ij} are scalar functions of the principal invariants of U, with $a'_{ij} = a_{ij}$.

\(^4\) See Truesdell & Noll [1, Section 68].
Lemma 1. Suppose that $u \in C^2(\Omega; \mathbb{R}^3)$ satisfies (13). Then
\[
\left(\int_{\Omega} L \nabla u \otimes L \nabla u \right) \in \mathcal{H} \quad \text{for all } L \in \text{Lin}.
\]

Proof. Let an $L \in \text{Lin}$ be given. It suffices to show that
\[
\left(\int_{\Omega} L \nabla u \otimes L \nabla u \right) [S] \in \text{Sym} \quad \text{for all } S \in \text{Sym},
\]
\[
\left(\int_{\Omega} L \nabla u \otimes L \nabla u \right) [W] = 0 \quad \text{for all } W \in \text{Skw}.
\]

Let an $S \in \text{Sym}$ be given with the spectral decomposition (3). Then
\[
\left(\int_{\Omega} L \nabla u \otimes L \nabla u \right) [S] = \sum_i \lambda_i \int_{\Omega} (L \nabla u m_i) \otimes (L \nabla u m_i).
\]

The right-hand side is obviously symmetric. Moreover, for $W \in \text{Skw}$, we use the divergence theorem to find that
\[
\left(\int_{\Omega} L \nabla u \otimes L \nabla u \right) [W] = -\left(\int_{\partial \Omega} L u \nabla u \nabla u \right) [W].
\]

The right-hand side vanishes by (13). □

Lemma 2. Suppose that $u \in C^2(\Omega; \mathbb{R}^3)$ satisfies (13). Then
\[
\left(\int_{\Omega} L \nabla u \otimes L \nabla u \right) [a \otimes b] c = \left(\int_{\Omega} L \nabla u \otimes L \nabla u \right) [a \otimes c] b
\]
for all $a, b, c \in \mathbb{R}^3$, and $L \in \text{Lin}$.

Proof. By using the divergence theorem, we find that
\[
\left(\int_{\Omega} L \nabla u \otimes L \nabla u \right) [a \otimes b] c = \left(\int_{\Omega} L \nabla u \otimes L \nabla u \right) [a \otimes c] b
\]
\[
+ \left(\int_{\partial \Omega} L u \nabla u \nabla u \right) [b \otimes c - c \otimes b] a.
\]

The conclusion then follows from (13). □

Lemma 3. Suppose that $u \in C^2(\Omega; \mathbb{R}^3)$ satisfies (13). Define
\[
g_{ij} = (E_i \otimes E_j) \cdot \left(\int_{\Omega} R^T \nabla u \otimes R^T \nabla u \right) \quad (i, j) \in \mathcal{M}, \quad (\text{no sum}),
\]
\[
g_{ij} = \frac{1}{2} (E_i \otimes E_j + E_j \otimes E_i) \cdot \left(\int_{\Omega} R^T \nabla u \otimes R^T \nabla u \right) \quad i \neq j \quad (\text{no sum}).
\]

(15)
Then
\[|g_0| \leq 2g' \quad \text{if } e_H = 1, \quad (16) \]
and the matrix
\[(G) = \begin{pmatrix} g_{11} & 2g_{12} & 2g_{13} \\ 2g_{12} & g_{22} & g_{23} \\ 2g_{13} & g_{23} & g_{33} \end{pmatrix} \quad (17) \]
is positive semi-definite.

Proof. By Lemma 2 and the hypothesis, we have
\[
g_u = \int_D \left(e_i \cdot R^T \nabla u e_i \right)^2 \quad \text{(no sum)},
\]
\[
g_u = 2 \int_D \left(e_i \cdot R^T \nabla u e_i \right) \left(e_j \cdot R^T \nabla u e_j \right)
= 2 \int_D \left(e_i \cdot R^T \nabla u e_j \right) \left(e_j \cdot R^T \nabla u e_i \right) \quad \text{for } e_{ii} = 1 \quad \text{(no sum)},
\]
\[
g' = \frac{1}{4} \int_D \left[(e_i \cdot R^T \nabla u e_i)^2 + (e_j \cdot R^T \nabla u e_j)^2 \right].
\]
Inequality (16) follows immediately. To show that the matrix \(G \) is positive semi-definite, let \(a_1, a_2, a_3 \in \mathbb{R} \) be given and observe that
\[
\begin{align*}
g_{11}a_1^2 + g_{22}a_2^2 + g_{33}a_3^2 + g_{12}a_1a_2 + g_{23}a_2a_3 + g_{31}a_3a_1 \\
= \int_D \left(\sum_i a_i e_i \cdot R^T \nabla u e_i \right)^2 \geq 0. \quad \square
\end{align*}
\]

Lemma 4. For a \(G \in \text{Sym}_n \), there exist \(v_1, v_2, \ldots, v_n \in \mathbb{R}^3 \), \(n \) being a positive integer, such that
\[
\left| \sum_{k=1}^n (e_i \cdot v_k) (e_j \cdot v_k) \right| = \sum_{k=1}^n (e_i \cdot v_k) (e_j \cdot v_k), \quad (18)
\]
\[
G = \sum_{k=1}^n v_k \otimes v_k. \quad (19)
\]

Proof. \(G \) has a spectral decomposition (3). We assume that the eigenvalues of \(G \) are ordered as
\[
\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq 0.
\]
We then have
\[
G = \lambda_3 I + \sum_{l=1}^2 \left(\lambda_l - \lambda_3 \right) m_l \otimes m_l.
\]
It then suffices to prove the lemma for those \(G \) of the form
\[
G = a \otimes a + b \otimes b, \quad a, b \in \mathbb{R}^3, \quad a \cdot b = 0.
\]

Let such a pair \(a \) and \(b \) be given. A straightforward calculation shows that we can find nonnegative numbers \(\alpha, \beta, \alpha_i, \) and \(\beta_i \) such that
\[
a \otimes a + b \otimes b = \alpha a \otimes a + \beta b \otimes b + \sum_i \left[\alpha_i e_i \otimes e_i + \beta_i [e_i \times (a \times b)] \otimes [e_i \times (a \times b)] \right],
\]
and that each component of the right-hand side is the sum of eight numbers of same sign (including zero). \(\square \)

Theorem 3. Suppose that \(F \) is constant in \(\Omega \), that \(S(F) \) satisfies the isotropy condition (8), and that \(A(F) \) satisfies the Legendre-Hadamard condition. Then
\[
\int_\Omega \nabla u \cdot A(F) [\nabla u] \geq 0
\]
for all \(u \in C^2(\Omega; \mathbb{R}^3) \) that satisfy (13).

Proof. By (11), (14), Lemma 1, and the fact that \(F \), and therefore \(U \), is constant in \(\Omega \), we find that
\[
\int_\Omega \nabla u \cdot A(F) [\nabla u] = \int_\Omega (R^T \nabla u) \cdot A(U) [R^T \nabla u]
\]
\[
= A(U)^T \cdot \left(\int_\Omega R^T \nabla u \otimes R^T \nabla u \right)^T
\]
\[
= P(A(U)^T) \cdot \left(\int_\Omega R^T \nabla u \otimes R^T \nabla u \right)^T
\]
\[
= P(A(U)^T) \cdot G
\]
where
\[
G = \sum_{i,j \in \mathcal{A}} g_{ij} E_{ij} \otimes E_{ij} + \sum_{i \neq j} g'_{ij} E_{ii} \otimes E_{jj},
\]
(20)
g\(_{ij}\) and \(g'_{ij}\) being defined by (15). By Propositions 4 and 5, it now suffices to show that \(G \) defined by (20) belongs to \(\mathcal{G}_+ \). To do so, we note from Lemmas 3 and 4 that the matrix \((G) \) defined by (17) is positive semi-definite and therefore has a representation (19) with (18) satisfied, that is, there exist \(v_{ki} \in \mathbb{R}, \ k = 1, 2, \ldots, n, \ i = 1, 2, 3, \) such that
\[
\left| \sum_{k=1}^n w_{ki} v_{ki} \right| = \sum_{k=1}^n |v_{ki} v_{ki}|,
\]
(21)
and
\[
g_{ii} = \sum_{k=1}^n v_{ki}^2, \quad \text{(no sum on } i),
\]
\[
g_{ij} = 2 \sum_{k=1}^n v_{ki} v_{kj}, \quad \text{for } i \neq j.
\]
We define
\[v_k = \sum_i |v_{ki}|^{1/2} e_i, \]
\[\hat{v}_k = \sum_i |v_{ki}|^{1/2} \text{sgn}(v_{ki}) e_i \quad \text{(no sum)}, \]
\[I_0 = I, \]
\[I_i = I - 2e_i \otimes e_i \quad \text{(no sum)}. \]

A straightforward calculation, with the aid of (17), (20) and (21), then yields
\[G = \frac{1}{4} \sum_{k=1}^3 \sum_{j=0}^3 I_k v_k \otimes I_j \hat{v}_k \otimes I_j \hat{v}_k + \sum_{j=0} \left(g_{ij} - \frac{1}{4} |g_{ij}| \right) E_{ii} \otimes E_{ii}. \]

By (16), the right-hand side belongs to \(\mathcal{G}_+ \), which completes the proof. \(\square \)

Acknowledgement. I thank PHOEBUS ROSAKIS and SCOTT SPECTOR for their helpful suggestions and comments. This work is partially supported by the U.S. Army Research Office through the Mathematical Sciences Institute at Cornell University.

References

Department of Mechanical Engineering
University of Houston
Houston, Texas

(Received May 15, 1990)